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ABSTRACT 

This paper presents a fault tolerant control (FTC) based on the type-2 fuzzy logic system 

(IT2FLS) using an adaptive control law for a double star induction machine (DSIM) under 

broken rotor bars (BRB) fault of a squirrel-cage in order to improve its reliability and 

availability. The adaptive fuzzy control is designed to compensate for the fault effect. The 

proposed FTC is able to maintain acceptable performance in the event of BRB. The stability 

of the closed-loop is verified by exploitation of Lyapunov theory. To proof the performance 

and effectiveness of the proposed FTC, a comparative study within sliding mode control 

(SMC) is carried out. Obtained results show that the proposed FTC has a better robustness 

against the BRB fault. 
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1. INTRODUCTION

The double star induction machine (DSIM) belongs to the 

category of multiphase induction machines (MIM). It has been 

selected as the best choice because of its many advantages 

over its three-phase counterpart. The DSIM has been proposed 

for different fields of industry that need high power such as 

electric hybrid vehicles, locomotive traction, ship propulsion 

and many other applications where the safety condition is 

required such as aerospace and offshore wind energy systems. 

DISM not only guarantees a decrease of rotor harmonics 

currents and torque pulsations but it also has many other 

advantages such as: reliability, power segmentation and higher 

efficiency. DSIM has a greater fault tolerance; it can continue 

to operate and maintain rotating flux even with open-phase 

faults thanks to the greater number of degrees of freedom that 

it owns compared to the three-phase machines [1].  

The motors installed in the industry are 85% of squirrel cage 

motors [2]. Induction motors are subject to various faults; 

about 40% to 50% are bearing faults, 5% to 10% are severe 

rotor faults, and 30% to 40% are stator-related faults [3]. 

Broken bars fault has proved dangerous and may be the cause 

of other faults in the stator and the rotor itself because a broken 

rotor bar considerably increases the currents flowing in the 

neighboring bars, which causes the increase of the mechanical 

stresses (constraints) and consequently causes the rupture of 

the corresponding bars [4]. BRB fault can be caused by 

failures in the rotor fabrication process, overloads (mechanical 

stress), mechanical cracks or thermal stress [5]. 

Compared to stator faults, detection of the broken rotor bar 

especially at an early stage is quite difficult, the appearance of 

this type of fault does not cause the machine to stop 

immediately but reduces its performance, for this reason, 

many diagnoses in the literature are used to detect the broken 

bar fault in squirrel cage rotors of induction motors [6], these 

detection processes exploit the information provided by the 

main signals of the machine such as: motor currents, torque, 

instantaneous power (active and reactive), mechanical 

vibrations and flux. Despite its drawbacks to the voltage 

source in case of voltage harmonic distortion, the MCSA 

method is widely used to detect a broken rotor bar [7]. The 

MCSA is largely used as a test in the process of monitoring 

induction machines, especially in the detection of electrical 

and mechanical faults due to its simplicity and efficiency. The 

MCSA does not need additional sensors; it is based solely on 

the analysis of the reliable information provided by the stator 

currents during start-up or in steady state [8].  

Inspired by the research of Belhamdi, this paper proposes a 

fuzzy type-2 adaptive control for DSIM with defective rotor in 

order to compensate the fault effect after estimating 

uncertainties. The modeling of the BRB fault in the (d-q) 

reference frame with consideration of homopolar components 

is carried out for the first time on this kind of multiphase 

machine. The method of modeling faults in this paper allows 

the development of other more innovative control techniques 

in the future. The proposed FTC is tested in healthy and 

defective conditions with other control methods applied 

recently on a six-phase induction machine [9,10]. Performance 

of these controllers is investigated and compared in terms of 

tracking reference of rotor speed, electromagnetic torque and 

rotor flux. This paper has made several contributions in 

relation to the recent research concerning the FTC: 

A novel adaptive fuzzy controller to master correctly the 

torque, flux and speed tracking of a DSIM with BRB fault has 

been proposed, in this contribution, the application of the 

adaptive fuzzy control as FTC for DSIM in a faulty case is 
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performed for the first time. 

Unlike, the adaptive control law has been implemented in 

all steps, which increases the tolerance of the controller, in 

addition, the proposed FTC treated a defective machine while 

was treating a healthy doubly-fed induction motor (DFIM) 

[11-12]. 

Compared to the work of Mekki, the proposed FTC does not 

need an observer or internal model to compensate the fault 

effect. 

In Masumpoor [13], an adaptive sliding-mode type-2 neuro-

fuzzy control of an induction motor is proposed, in order to 

compensate parametric uncertainties and disturbances, the 

parameters of this fusion of control are adjusted thanks to an 

online learning algorithm based on sliding-mode training 

algorithm and type-2 fuzzy systems adaptive controller, the 

simulation results provide a robust tracking of reference but 

remain insufficient because the system global stability that is 

needed to validate this control strategy is not discussed. In this 

paper the stability analysis of the closed-loop system is strictly 

proven. 

Compared with González-PrietoI, and Mahmoud [14-15], 

where authors present an FTC of six-phase induction motor 

under open-circuit fault and an FTC of five-phase induction 

machine under open gate transistor faults, respectively, the 

degree of severity of the fault dealt with in this paper is more 

important since open phase fault tolerance is a specific feature 

of multiphase machines thanks to the high number of phases. 

The remainder of this paper is organized as follows; the next 

section describes the DSIM faulty model. The design of an 

interval type-2 fuzzy logic adaptive controller for DSIM is 

carried out in section 3. Simulation results and their 

discussions are given in section 4. The last section is reserved 

for conclusion. 

 

 

2. DSIM FAULTY MODEL 

 

In order to have a light model, we consider the rotor as a 

balanced three-phase system. In Figure 1, the squirrel cage 

rotor is replaced by an equivalent three phase windings (single 

star winding) with equivalent resistance 𝑅𝑟  and leakage 𝐿𝑟 . 

When the rotor of the DSIM is broken, the rotor resistance is 

different from the nominal value [16], therefore, to simulate a 

BRB in the double star induction machine; we increase the 

resistance of a rotor phase by adding a defective resistance “𝑒”. 

 

 
 

Figure 1. Simulation of BRB in DSIM 

 

The first-order differential equations of the rotor voltages in 

the DSIM can be presented in the natural “abc” reference 

frame as: 

 

[𝑉𝑟
𝑎𝑏𝑐] = [𝑅𝑟][𝐼𝑟

𝑎𝑏𝑐] +
𝑑

𝑑𝑡
[𝛷𝑟

𝑎𝑏𝑐]                                          (1) 

 

With: 

 

[𝑅𝑟] = [

𝑅𝑟 0 0
0 𝑅𝑟 0
0 0 𝑅𝑟

]; 

[𝛷𝑟
𝑎𝑏𝑐] = [𝜑𝑟𝑎 𝜑𝑟𝑏 𝜑𝑟𝑐]𝑇;  

[𝐼𝑟
𝑎𝑏𝑐] = [𝑖𝑟𝑎 𝑖𝑟𝑏 𝑖𝑟𝑐]

𝑇;  

[𝑉𝑟
𝑎𝑏𝑐] = [𝑣𝑟𝑎 𝑣𝑟𝑏 𝑣𝑟𝑐]𝑇. 

 

where: [𝑅𝑟]  is the matrix of resistances, [𝛷𝑟
𝑎𝑏𝑐]  is the flux 

vector, [𝐼𝑟
𝑎𝑏𝑐] is the currents vector and [𝑉𝑟

𝑎𝑏𝑐] is the voltages 

vector. 

When BRB fault occurs, the resistances matrix becomes as 

follow: 

[𝑅𝑟
𝐵𝑅𝐵] = [

𝑅𝑟 0 0
0 𝑅𝑟 0
0 0 𝑅𝑟 + 𝑒

]  

In this case, the voltage equation in (1) becomes: 

 

[𝑉𝑟
𝑎𝑏𝑐] = [𝑅𝑟

𝐵𝑅𝐵][𝐼𝑟
𝑎𝑏𝑐] +

𝑑

𝑑𝑡
[𝛷𝑟

𝑎𝑏𝑐]                                       (2) 

 

By applying the park transformation that conserves energy 

on (2), we obtain the voltages equations in the (d-q) reference 

frame: 

 

[𝑉𝑟
𝑑𝑞𝑜

] = [𝑃𝑟(𝜃)][𝑅𝑟
𝐵𝑅𝐵] [𝑃𝑟(𝜃)]−1[𝐼𝑟

𝑑𝑞𝑜
] +

[𝑃𝑟(𝜃)]
𝑑

𝑑𝑡
{[𝑃𝑟(𝜃)]−1}[𝛷𝑟

𝑑𝑞𝑜
] +

𝑑

𝑑𝑡
[𝛷𝑟

𝑑𝑞𝑜
]                             (3) 

 

Where: [𝑉𝑟
𝑑𝑞𝑜

] = [𝑣𝑟𝑑 𝑣𝑟𝑞 𝑣𝑟𝑜]𝑇 is the voltages vector, 

[𝐼𝑟
𝑑𝑞𝑜

] = [𝑖𝑟𝑑 𝑖𝑟𝑞 𝑖𝑟𝑜]𝑇 is the currents vector and [𝛷𝑟
𝑑𝑞𝑜

] =
[𝜑𝑟𝑑 𝜑𝑟𝑞 𝜑𝑟𝑜]𝑇 is the rotor flux vector.  

[𝑃𝑟(𝜃)] is the rotor winding transformation matrix, is given 

by: 

 
[𝑃𝑟(𝜃)] =

√
2

3

[
 
 
 
 𝑐𝑜𝑠(𝜃𝑠 − 𝜃𝑟) 𝑐𝑜𝑠 (𝜃𝑠 − 𝜃𝑟 −

2𝜋

3
) 𝑐𝑜𝑠 (𝜃𝑠 − 𝜃𝑟 +

2𝜋

3
)

− 𝑠𝑖𝑛(𝜃𝑠 − 𝜃𝑟) − 𝑠𝑖𝑛 (𝜃𝑠 − 𝜃𝑟 −
2𝜋

3
) − 𝑠𝑖𝑛 (𝜃𝑠 − 𝜃𝑟 +

2𝜋

3
)

1

√2

1

√2

1

√2 ]
 
 
 
 

         (4) 

 

With: {
𝜔𝑟 =

𝑑

𝑑𝑡
𝜃𝑟

𝜔𝑠 =
𝑑

𝑑𝑡
𝜃𝑠

. 

Finally, The DSIM model in presence of BRB faults are 

given by the following equations: 

 
𝑑

𝑑𝑡
𝛺 =

1

𝐽
[𝑝2 𝐿𝑚

𝐿𝑚+𝐿𝑟
𝜑𝑟(𝑖𝑠𝑞1 + 𝑖𝑠𝑞2) − 𝑝𝑇𝐿 − 𝐾𝑓𝛺]                  (5) 

 
𝑑

𝑑𝑡
𝜑𝑟 =

−𝑅𝑟

𝐿𝑟+𝐿𝑚
𝜑𝑟 +

𝐿𝑚𝑅𝑟

𝐿𝑟+𝐿𝑚
(𝑖𝑠𝑑1 + 𝑖𝑠𝑑2) + 𝛤1                       (6) 

 
𝑑

𝑑𝑡
𝑖𝑠𝑑1 =

1

𝐿𝑠1
{𝑣𝑠𝑑1 − 𝑅𝑠1𝑖𝑠𝑑1 + 𝜔𝑠(𝐿𝑠1𝑖𝑠𝑞1 + 𝑇𝑟𝜑𝑟𝜔𝑔𝑙)} + 𝛤2     (7) 

 
𝑑

𝑑𝑡
𝑖𝑠𝑞1 =

1

𝐿𝑠1
{𝑣𝑠𝑞1 − 𝑅𝑠1𝑖𝑠𝑞1 − 𝜔𝑠(𝐿𝑠1𝑖𝑠𝑑1 + 𝜑𝑟)} + 𝛤3      (8) 

 
𝑑

𝑑𝑡
𝑖𝑠𝑜1 =

1

𝐿𝑠1
(𝑣𝑠𝑜1 − 𝑅𝑠1𝑖𝑠𝑜1)                                                (9) 

 
𝑑

𝑑𝑡
𝑖𝑠𝑑2 =

1

𝐿𝑠2
{𝑣𝑠𝑑2 − 𝑅𝑠2𝑖𝑠𝑑2 + 𝜔𝑠(𝐿𝑠2𝑖𝑠𝑞2 + 𝑇𝑟𝜑𝑟𝜔𝑔𝑙)} + 𝛤4    (10) 
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𝑑

𝑑𝑡
𝑖𝑠𝑞2 =

1

𝐿𝑠2
{𝑣𝑠𝑞2 − 𝑅𝑠2𝑖𝑠𝑞2 − 𝜔𝑠(𝐿𝑠2𝑖𝑠𝑑2 + 𝜑𝑟)} + 𝛤5      (11) 

 
𝑑

𝑑𝑡
𝑖𝑠𝑜2 =

1

𝐿𝑠2
(𝑣𝑠𝑜2 − 𝑅𝑠2𝑖𝑠𝑜2)                                                (12) 

 

where 𝛤𝑖  𝑖 = 1,5 represent the fault terms due to broken bar 

fault, they are given by: 

 

𝛤1 = −(
𝑅𝑟

𝐿𝑟+𝐿𝑚

𝛼

𝛽(𝐿𝑟+𝐿𝑚)
−

𝜔𝑔𝑙

𝛽
)𝜑𝑟 + (

𝛼

𝛽

𝐿𝑚

𝐿𝑟+𝐿𝑚
−

𝑅𝑟𝐿𝑚

𝐿𝑟+𝐿𝑚
) (𝑖𝑠𝑑1 + 𝑖𝑠𝑑2);  

𝛤2 = (
𝐿𝑟

𝜂
− 𝑇𝑟)

𝜔𝑠𝜔𝑔𝑙𝜑𝑟

𝐿𝑠2
  

𝛤3 = −
𝐿𝑟𝛾

𝐿𝑠2
𝜔𝑠𝜔𝑔𝑙𝜑𝑟; 

𝛤4 =
1

𝐿𝑠2
(

𝐿𝑟

𝜂
− 𝑇𝑟)𝜔𝑠𝜔𝑔𝑙𝜑𝑟; 

𝛤5 = −
𝐿𝑟

𝐿𝑠2𝛾
𝜔𝑠𝜔𝑔𝑙𝜑𝑟 . 

With:  

𝜂 = −
𝑎6𝑎2

2−2𝑎2𝑎3𝑎5+𝑎4𝑎3
2+𝑎1𝑎5

2−𝑎1𝑎4𝑎6

−𝑎3
2+𝑎1𝑎6

; 

𝝁 = −
𝒂𝟔𝒂𝟐

𝟐−𝟐𝒂𝟐𝒂𝟑𝒂𝟓+𝒂𝟒𝒂𝟑
𝟐+𝒂𝟏𝒂𝟓

𝟐−𝒂𝟏𝒂𝟒𝒂𝟔

𝒂𝟐𝒂𝟑−𝒂𝟏𝒂𝟓
; 

𝛾 =
𝑎2(𝑎6𝑎2−2𝑎3𝑎5)+𝑎4𝑎3

2+𝑎1(𝑎5
2−𝑎4𝑎6)

𝑎2𝑎6−𝑎3𝑎5
; 

𝛼 =
𝑎2+(𝑎3−

𝑎1𝑎5
𝑎2

)(𝑎5−
𝑎3𝑎4
𝑎2

)

(𝑎6−
𝑎3𝑎5
𝑎2

)−
𝑎1𝑎4
𝑎2

; 

𝛽 =
𝑎4

𝑎2
+

𝑎5(𝑎5−
𝑎4𝑎3
𝑎2

)

𝑎2(𝑎6−
𝑎5𝑎3
𝑎2

)
; 

Where: 

𝑎1 =
𝑒

3
+ 𝑟𝑟 −

𝑒

6
𝑐𝑜𝑠( 2𝜃𝑟 − 2𝜃𝑠) −

√3

6
𝑒 𝑠𝑖𝑛( 2𝜃𝑟 − 2𝜃𝑠);  

𝑎2= 
𝑒

3
𝑐𝑜𝑠( 2𝜃𝑟 − 2𝜃𝑠 +

𝜋

6
); 

𝑎3= −
√2

3
𝑒 𝑐𝑜𝑠( 𝜃𝑟 − 𝜃𝑠 +

𝜋

3
); 

𝑎4 =
𝑒

3
+ 𝑟𝑟 +

𝑒

6
𝑐𝑜𝑠( 2𝜃𝑟 − 2𝜃𝑠) +

√3

6
𝑒 𝑠𝑖𝑛( 2𝜃𝑟 − 2𝜃𝑠);  

𝑎5= −
√2

3
𝑒 𝑐𝑜𝑠( 𝜃𝑠 − 𝜃𝑟 +

𝜋

6
);  

𝑎6 =
𝑒

3
+ 𝑟𝑟. 

 

 

3. DESIGN OF AN INTERVAL TYPE-2 FUZZY LOGIC 

ADAPTIVE CONTROLLER FOR DSIM  

 

The objective is to design an adaptive fuzzy control scheme 

for an uncertain DSIM model in the presence of BRB faults to 

properly manage flux and speed tracking. The role of the type-

2 fuzzy systems is to approximate the local nonlinearities of 

each subsystem, while the fuzzy parameters are adjusted in 

real time by adaptive laws, respecting the stability and 

convergence of the system according to the Lyapunov theory 

until the desired tracking performance is reached. To easily 

design the proposed controller, we operate with the DSIM 

faulty model developed in (5)-(12), in the presence of BRB 

faults, we have: 
𝑑

𝑑𝑡
𝛺 =

𝑝2

𝐽

𝐿𝑚

𝐿𝑚+𝐿𝑟
𝜑𝑟(𝑖𝑠𝑞1 + 𝑖𝑠𝑞2) + 𝑓1  

𝑑

𝑑𝑡
𝜑𝑟 =

𝐿𝑚𝑅𝑟

𝐿𝑟+𝐿𝑚
(𝑖𝑠𝑑1 + 𝑖𝑠𝑑2) + 𝑓2  

𝑑

𝑑𝑡
𝑖𝑠𝑑1 =

1

𝐿𝑠1
𝑣𝑠𝑑1 + 𝑓3  

𝑑

𝑑𝑡
𝑖𝑠𝑞1 =

1

𝐿𝑠1
𝑣𝑠𝑞1 + 𝑓4  

𝑑

𝑑𝑡
𝑖𝑠𝑜1 =

1

𝐿𝑠1
𝑣𝑠𝑜1 + 𝑓5  

𝑑

𝑑𝑡
𝑖𝑠𝑑2 =

1

𝐿𝑠2
𝑣𝑠𝑑2 + 𝑓6  

𝑑

𝑑𝑡
𝑖𝑠𝑞2 =

1

𝐿𝑠2
𝑣𝑠𝑞2 + 𝑓7  

𝑑

𝑑𝑡
𝑖𝑠𝑜2 =

1

𝐿𝑠2
𝑣𝑠𝑜2 + 𝑓8                                                        (13) 

 

where:  

𝑓1 = −
𝑝

𝐽
𝑇𝐿 −

𝐾𝑓

𝐽
𝛺; 

𝑓2 =
−𝑅𝑟

𝐿𝑟+𝐿𝑚
𝜑𝑟 + 𝛤1;   

𝑓3 =
−𝑅𝑠1

𝐿𝑠1
𝑖𝑠𝑑1 + 𝜔𝑠𝑖𝑠𝑞1 +

𝜔𝑠𝑇𝑟𝜑𝑟𝜔𝑔𝑙

𝐿𝑠1
+ 𝛤2; 

𝑓4 =
−𝑅𝑠1

𝐿𝑠1
𝑖𝑠𝑞1 − 𝜔𝑠𝑖𝑠𝑑1 −

𝜔𝑠𝜑𝑟

𝐿𝑠1
+ 𝛤3; 

𝑓5 =
−𝑅𝑠1

𝐿𝑠1
𝑖𝑠𝑜1; 

𝑓6 =
−𝑅𝑠2

𝐿𝑠2
𝑖𝑠𝑑2 + 𝜔𝑠𝑖𝑠𝑞2 +

𝜔𝑠𝑇𝑟𝜑𝑟𝜔𝑔𝑙

𝐿𝑠2
+ 𝛤4; 

𝑓7 =
−𝑅𝑠2

𝐿𝑠2
𝑖𝑠𝑞2 − 𝜔𝑠𝑖𝑠𝑑2 −

𝜔𝑠𝜑𝑟

𝐿𝑠2
+ 𝛤5; 

𝑓8 =
−𝑅𝑠2

𝐿𝑠2
𝑖𝑠𝑜2. 

The nonlinear functions ℎ𝑖(�̄�𝑖) 𝑖 = 1,8 can be estimated by 

the IT2FLS as follows: 

 

ℎ̂𝑖(�̄�𝑖) = 𝜃𝑖
𝑇𝜓𝑖(�̄�𝑖), 𝑖 = 1, . . . ,8                                         (14) 

 

where: �̄�𝑖  is the input vector, 𝜃𝑖  is the adjusted vector 

parameter and 𝜓𝑖(�̄�𝑖)  is the average of the basic functions 

calculated using IT2FLS (each basic function is computed as 

the average of the corresponding left and right basic functions). 

Let us define:  

The actual functions ℎ𝑖(�̄�𝑖) are given by: 

 

ℎ𝑖(�̄�𝑖) = 𝜃𝑖
∗𝑇𝑖(�̄�𝑖)̄

𝑖(�̄�𝑖) 𝑖 = 1,8                                               (15) 

 

The use of the optimal parameters 𝜃𝑖
∗ is only for analytical 

purposes. For this reason, integrating the controller does not 

require its value [11]. The parametric errors are given by:  

 

�̃�𝑖 = 𝜃𝑖
∗ − 𝜃𝑖, 𝑖 = 1, . . . ,8                                                   (16) 

 

�̄�𝑖(�̄�𝑖) are the approximation errors, such as: |�̄�𝑖(�̄�𝑖)| ≤ �̄̄�𝑖 

Where �̄̄�𝑖 are the unknown positive parameters. In order to 

achieve precise flux and speed tracking, some assumptions 

have been put: 

Assumption1. The nonlinear functions 𝑓𝑖(�̄�𝑖) 𝑖 = 1,8 are 

continuous nonlinear functions assumed to be unknown. 

Assumption2. The reference signals 𝛺∗, 𝜑𝑟
∗, 𝑖𝑠𝑑1

∗ , 𝑖𝑠𝑞1
∗ , 𝑖𝑠𝑑2

∗ , 

𝑖𝑠𝑞2
∗ , 𝑖𝑠𝑜1

∗ , 𝑖𝑠𝑜2
∗  and their first derivatives are bounded and 

continuous.   

Assumption3. Rotor and stator currents and rotor speed are 

available for measurement. The tracking errors and their 

filtered errors are given by: 

For rotor speed 

 

�̃�(𝑡) = 𝛺(𝑡) − 𝛺∗ , 𝑆𝛺 = �̃�(𝑡) + 𝜆𝛺 ∫ �̃�(𝜏)𝑑𝜏
𝑡

0
 with �̃�(0) =

0                                                                                           (17) 

 

For rotor flux  

 

�̃�𝑟(𝑡) = 𝜑𝑟(𝑡) − 𝜑𝑟
∗ , 𝑆𝜑 = �̃�𝑟(𝑡) + 𝜆𝜑 ∫ �̃�𝑟(𝜏)𝑑𝜏

𝑡

0
, with 

�̃�𝑟(0) = 0                                                                                (18) 
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For stator currents 

 

𝑖̃𝑠𝑑1(𝑡) = 𝑖𝑠𝑑1(𝑡) − 𝑖𝑠𝑑1
∗ , 𝑆𝑖𝑠𝑑1 = 𝑖̃𝑠𝑑1(𝑡) + 𝜆𝑖𝑠𝑑1 ∫ 𝑖̃𝑠𝑑1(𝜏)𝑑𝜏

𝑡

0
, 

with 𝑖̃𝑠𝑑1(0) = 0                                                                   (19) 

 

𝑖̃𝑠𝑑2(𝑡) = 𝑖𝑠𝑑2(𝑡) − 𝑖𝑠𝑑2
∗ , 𝑆𝑖𝑠𝑑2 = 𝑖̃𝑠𝑑2(𝑡) + 𝜆𝑖𝑠𝑑2 ∫ 𝑖̃𝑠𝑑2(𝜏)𝑑𝜏

𝑡

0
, 

with 𝑖̃𝑠𝑑2(0) = 0                                                                  (20) 

 

𝑖̃𝑠𝑞1(𝑡) = 𝑖𝑠𝑞1(𝑡) − 𝑖𝑠𝑞1
∗ , 𝑆𝑖𝑠𝑞1 = 𝑖̃𝑠𝑞1(𝑡) + 𝜆𝑖𝑠𝑞1 ∫ 𝑖̃𝑠𝑞1(𝜏)𝑑𝜏

𝑡

0
, 

with 𝑖̃𝑠𝑞1(0) = 0                                                                 (21) 

 

𝑖̃𝑠𝑞2(𝑡) = 𝑖𝑠𝑞2(𝑡) − 𝑖𝑠𝑞2
∗ , 𝑆𝑖𝑠𝑞2 = 𝑖̃𝑠𝑞2(𝑡) + 𝜆𝑖𝑠𝑞2 ∫ 𝑖̃𝑠𝑞2(𝜏)𝑑𝜏

𝑡

0
, 

with 𝑖̃𝑠𝑞2(0) = 0                                                                    (22) 

 

For homopolar components 

 

𝑖̃𝑠𝑜1(𝑡) = 𝑖𝑠𝑜1(𝑡) − 𝑖𝑠𝑜1
∗ , 𝑆𝑖𝑠𝑜1 = 𝑖�̃�𝑜1(𝑡) + 𝜆𝑖𝑠𝑜1 ∫ 𝑖̃𝑠𝑜1(𝜏)𝑑𝜏

𝑡

0
, 

with 𝑖̃𝑠𝑜1(0) = 0                                                                    (23) 

 

𝑖̃𝑠𝑜2(𝑡) = 𝑖𝑠𝑜2(𝑡) − 𝑖𝑠𝑜2
∗ , 𝑆𝑖𝑠𝑜2 = 𝑖�̃�𝑜2(𝑡) + 𝜆𝑖𝑠𝑜2 ∫ 𝑖̃𝑠𝑜2(𝜏)𝑑𝜏

𝑡

0
, 

with 𝑖̃𝑠𝑜2(0) = 0                                                                  (24) 

 

where: 𝜆𝛺 , 𝜆𝜑𝑟
, 𝜆𝑖𝑠𝑑1 , 𝜆𝑖𝑠𝑑2 , 𝜆𝑖𝑠𝑞1 , 𝜆𝑖𝑠𝑞2 , 𝜆𝑖𝑠𝑜1  and 𝜆𝑖𝑠𝑜2  are 

strictly positive design parameters, and we admit that:  

 

{

𝑖𝑠𝑞1 + 𝑖𝑠𝑞2 = 𝑖𝑠𝑞 ,  𝑖𝑠𝑑1 + 𝑖𝑠𝑑2 = 𝑖𝑠𝑑

𝑖𝑠𝑞1
∗ = 𝑖𝑠𝑞2

∗ =
𝑖𝑠𝑞
∗

2
,   𝑖𝑠𝑑1

∗ = 𝑖𝑠𝑑2
∗ =

𝑖𝑠𝑑
∗

2

𝑖𝑠𝑜1
∗ = 0,  𝑖𝑠𝑜2

∗ = 0

                                  (25) 

 

The following adaptive fuzzy control laws are made in the 

case where the dynamics of DSIM is uncertain: 

 

𝑖𝑠𝑞
∗ =

𝐽(𝐿𝑚+𝐿𝑟)

𝑝2𝐿𝑚
(−𝜃1

𝑇𝜓1(�̄�1) − 𝑘11𝑆𝛺 − 𝑘12 𝑡𝑎𝑛ℎ (
𝑆𝛺

𝜀𝑖𝑠𝑞
))     (26) 

 

𝑖𝑠𝑑
∗ =

𝐿𝑟+𝐿𝑚

𝐿𝑚𝑅𝑟
(−𝜃2

𝑇𝜓2(�̄�2) − 𝑘21𝑆𝜑𝑟
− 𝑘22 𝑡𝑎𝑛ℎ (

𝑆𝜑𝑟

𝜀𝑖𝑠𝑑
))       (27) 

 

𝑣𝑠𝑑1 = 𝐿𝑠1 (−𝜃3
𝑇𝜓3(�̄�3) − 𝑘31𝑆𝑖𝑠𝑑1 − 𝑘32 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑑1

𝜀𝑖𝑠𝑑1
))    (28) 

 

𝑣𝑠𝑞1 = 𝐿𝑠1 (−𝜃4
𝑇𝜓4(�̄�4) − 𝑘41𝑆𝑖𝑠𝑞1 − 𝑘42 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑞1

𝜀𝑖𝑠𝑞1
))    (29) 

 

𝑣𝑠𝑜1 = −𝜃5
𝑇𝜓5(�̄�5) − 𝑘51𝑆𝑖𝑠𝑜1 − 𝑘52 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑜1

𝜀𝑖𝑠𝑜1
)               (30) 

 

𝑣𝑠𝑑2 = 𝐿𝑠2 (−𝜃6
𝑇𝜓6(�̄�6) − 𝑘61𝑆𝑖𝑠𝑑2 − 𝑘62 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑑2

𝜀𝑖𝑠𝑑2
))   (31) 

 

𝑣𝑠𝑞2 = 𝐿𝑠2 (−𝜃7
𝑇𝜓7(�̄�7) − 𝑘71𝑆𝑖𝑠𝑞1 − 𝑘72 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑞2

𝜀𝑖𝑠𝑞2
))    (32) 

 

𝑣𝑠𝑜2 = −𝜃8
𝑇𝜓8(�̄�8) − 𝑘81𝑆𝑖𝑠𝑜2 − 𝑘82 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑜2

𝜀𝑖𝑠𝑜2
)              (33) 

 

Where: the design parameters 𝑘𝑖1 remain constants for 𝑖 =

1,8 . 𝜀𝑖𝑠𝑞 , 𝜀𝑖𝑠𝑑 , 𝜀𝑖𝑠𝑑1 , 𝜀𝑖𝑠𝑞1 , 𝜀𝑖𝑠𝑜1 , 𝜀𝑖𝑠𝑑2 , 𝜀𝑖𝑠𝑞2  and 𝜀𝑖𝑠𝑜2  are 

absolutely positive design constants, usually are small.�̄�
�̃�𝑘

𝑖(𝑥𝑘) 

is the abbreviation hyperbolic tangent function. The interval 

type-2 fuzzy system has as inputs, the following vectors: �̄�1 =

[𝛺∗, 𝛺]𝑇 , �̄�2 = [𝜑𝑟
∗, 𝜑𝑟]

𝑇 , �̄�3 = [𝑖𝑠𝑑1, 𝑖𝑠𝑞1]
𝑇

, �̄�4 = [𝑖𝑠𝑞1, 𝑖𝑠𝑑1]
𝑇

, 

�̄�5 = [𝑖𝑠𝑜1
∗ , 𝑖𝑠𝑜1]

𝑇 , �̄�6 = [𝑖𝑠𝑑2, 𝑖𝑠𝑞2]
𝑇

, �̄�7 = [𝑖𝑠𝑞2, 𝑖𝑠𝑑2]
𝑇

, �̄�8 =

[𝑖𝑠𝑜2
∗ , 𝑖𝑠𝑜2]

𝑇. According to [11]: to estimate the unknown fuzzy 

vectors (𝜃𝑖
∗) and the unknown parameters (𝑘𝑖2

∗ ) for 𝑖 = 1,8, we 

adopt the following adaptive laws: 

 

�̇�1 = −𝜎𝜃1
𝛾𝜃1

𝜃1 + 𝛾𝜃1
𝑆𝛺𝜓1(�̄�1)                                         (34) 

 

�̇�2 = −𝜎𝜃2
𝛾𝜃2

𝜃2 + 𝛾𝜃2
𝑆𝜑𝜓2(�̄�2)                                        (35) 

 

�̇�3 = −𝜎𝜃3
𝛾𝜃3

𝜃3 + 𝛾𝜃3
𝑆𝑖𝑠𝑑1𝜓3(�̄�3)                                    (36) 

 

�̇�4 = −𝜎𝜃4
𝛾𝜃4

𝜃4 + 𝛾𝜃4
𝑆𝑖𝑠𝑞1𝜓4(�̄�4)                                        (37) 

 

�̇�5 = −𝜎𝜃5
𝛾𝜃5

𝜃5 + 𝛾𝜃5
𝑆𝑖𝑠𝑜1𝜓5(�̄�5)                                    (38) 

 

�̇�6 = −𝜎𝜃6
𝛾𝜃6

𝜃6 + 𝛾𝜃6
𝑆𝑖𝑠𝑑2𝜓6(�̄�6)                                    (39) 

 

�̇�7 = −𝜎𝜃7
𝛾𝜃7

𝜃7 + 𝛾𝜃7
𝑆𝑖𝑠𝑞2𝜓7(�̄�7)                                    (40) 

 

�̇�8 = −𝜎𝜃8
𝛾𝜃8

𝜃8 + 𝛾𝜃8
𝑆𝑖𝑠𝑜2𝜓8(�̄�8)                                      (41) 

 

�̇�12 = −𝜎𝑘1
𝛾𝑘1

𝑘12 + 𝛾𝑘1
𝑆𝛺 𝑡𝑎𝑛ℎ (

𝑆𝛺

𝜀𝑖𝑠𝑞
)                              (42) 

 

�̇�22 = −𝜎𝑘2
𝛾𝑘2

𝑘22 + 𝛾𝑘2
𝑆𝜑 𝑡𝑎𝑛ℎ (

𝑆𝜑

𝜀𝑖𝑠𝑑
)                              (43) 

 

�̇�32 = −𝜎𝑘3
𝛾𝑘3

𝑘32 + 𝛾𝑘3
𝑆𝑖𝑠𝑑1 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑑1

𝜀𝑖𝑠𝑑1
)                        (44) 

 

�̇�42 = −𝜎𝑘4
𝛾𝑘4

𝑘42 + 𝛾𝑘4
𝑆𝑖𝑠𝑞1 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑞1

𝜀𝑖𝑠𝑞1
)                           (45) 

 

�̇�52 = −𝜎𝑘5
𝛾𝑘5

𝑘52 + 𝛾𝑘5
𝑆𝑖𝑠𝑜1 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑜1

𝜀𝑖𝑠𝑜1
)                        (46) 

 

�̇�62 = −𝜎𝑘6
𝛾𝑘6

𝑘62 + 𝛾𝑘6
𝑆𝑖𝑠𝑑2 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑑2

𝜀𝑖𝑠𝑑2
)                         (47) 

 

�̇�72 = −𝜎𝑘7
𝛾𝑘7

𝑘72 + 𝛾𝑘7
𝑆𝑖𝑠𝑞2 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑞2

𝜀𝑖𝑠𝑞2
)                        (48) 

 

�̇�82 = −𝜎𝑘8
𝛾𝑘8

𝑘82 + 𝛾𝑘8
𝑆𝑖𝑠𝑜2 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑜2

𝜀𝑖𝑠𝑜2
)                          (49) 

 

Where: 𝜎𝜃𝑖
,  𝛾𝜃𝑖

,  𝛾𝑘𝑖
,  𝜎𝑘𝑖

> 0  (for 𝑖 = 1,8 ); these 

parameters are design constants. 

Theorem 1  

The following properties are valid for DSIM modeled by 

(5)-(12) and controlled by the adaptive laws presented in (34)-

(49): 

The signals delimitation is guaranteed in closed-loop. 

The optimal choice of the setting parameters ensures the 

exponential convergence of the errors variables �̃�(𝑡), �̃�𝑟(𝑡), 

𝑖̃𝑠𝑑1(𝑡), 𝑖̃𝑠𝑞1(𝑡), 𝑖̃𝑠𝑑2(𝑡), 𝑖̃𝑠𝑞2(𝑡), 𝑖̃𝑠𝑜1(𝑡) and 𝑖̃𝑠𝑜2(𝑡) to a ball 

with an insignificant radius.   

The proof of Theorem 1 is based on Lyapunov's theory of 

stability. It is presented by a feedback structure with two 

consecutive steps. 

Step 1: The purpose of this step is to lead the speed to its 

desired reference by an adequate speed controller. Using the 

formula of the filtered rotor speed error defined in (17): 
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𝑆𝛺 = �̃�(𝑡) + 𝜆𝛺 ∫ �̃�(𝜏)𝑑𝜏
𝑡

0
                                                 (50) 

 

Using 13, the time derivative of 𝑆𝛺 is: 

 

�̇�𝛺 = �̇̃�(𝑡) + 𝜆𝛺�̃�  

�̇�𝛺 =
𝑝2

𝐽

𝐿𝑚

𝐿𝑚+𝐿𝑟
𝜑𝑟(𝑖𝑠𝑞1 + 𝑖𝑠𝑞2) + 𝑓1 − �̇�∗ + 𝜆𝛺�̃�  

�̇�𝛺 = ℎ1(�̄�1) +
𝑝2

𝐽

𝐿𝑚

𝐿𝑚+𝐿𝑟
𝜑𝑟𝑖𝑠𝑞

∗                                              (51) 

 

where: ℎ1(�̄�1) = 𝑓1 − �̇�∗ + 𝜆𝛺�̃� and 𝑖𝑠𝑞
∗  is the reference value 

of (𝑖𝑠𝑞1 + 𝑖𝑠𝑞2) that regulates the rotor speed and ensures the 

load disturbances rejection capability. The Lyapunov function 

associated with the rotor speed error is presented by: 

 

𝑉1 =
1

2
𝑆𝛺

2                                                                              (52) 

 

The time derivative of (52) is: 

 

�̇�1 = 𝑆𝛺ℎ1(�̄�1) +
𝑝2

𝐽

𝐿𝑚

𝐿𝑚+𝐿𝑟
𝜑𝑟𝑖𝑠𝑞

∗                                            (53) 

 

The following adaptive fuzzy system is developed to 

approximate the uncertain continuous function ℎ1(𝑥1): 

 

ℎ̂1(�̄�1) = 𝜃1
𝑇𝜓1(�̄�1)                                                                (54) 

 

ℎ1(�̄�1) = 𝜃1
∗𝑇𝜓1(�̄�1) + �̄�1(�̄�1)  

ℎ1(�̄�1) = −�̃�1
𝑇𝜓1(�̄�1) + 𝜃1

𝑇𝜓1(�̄�1) + �̄�1(�̄�1)                     (55) 

 

where: �̃�1 = 𝜃1 − 𝜃1
∗  is the parameter error vector. By 

replacing (55) in (53), we obtain: 

 

�̇�1 = −𝑆𝛺�̃�1
𝑇𝜓1(�̄�1) + 𝑆𝛺𝜃1

𝑇𝜓1(�̄�1) + 𝑆𝛺�̄�1(�̄�1) +
𝑝2

𝐽

𝐿𝑚

𝐿𝑚+𝐿𝑟
𝜑𝑟𝑖𝑠𝑞

∗                                                                         (56) 

 

where: �̄̄�1 is an unknown constant such as |�̄�1(�̄�1)| ≤ �̄̄�1. 

By choosing the expression of 𝑖𝑠𝑞
∗  presented in (26), we can 

make the following inequality: 

 

�̇�1 ≤ −𝑆𝛺�̃�1
𝑇𝜓1(�̄�1) + 𝑘12

∗ |𝑆𝛺| − 𝑘12𝑆𝛺 𝑡𝑎𝑛ℎ (
𝑆𝛺

𝜀𝑖𝑠𝑞
) − 𝑘11𝑆𝛺

2                                                

(57) 

 

where: 𝑘12
∗ = �̄̄�1. 

Lemma 1 the set {𝜀𝑖 > 0,  𝑥 ∈ ℜ} check the following 

inequality [11]: 

 

{
0 ≤ |𝑥| − 𝑥 𝑡𝑎𝑛ℎ (

𝑥

𝜀𝑖
) ≤ 𝜀𝑖 = 𝜌𝜀𝑖

𝑝 = 𝑒−(1+𝑝) ≃ 0.2785
                                       (58) 

 

By exploiting (58), (57) becomes: 

 

�̇�1 ≤ −𝑆𝛺�̃�1
𝑇𝜓1(�̄�1) + 𝑘12

∗ 𝜀�̄�𝑠𝑞 − �̃�12𝑆𝛺 𝑡𝑎𝑛ℎ (
𝑆𝛺

𝜀𝑖𝑠𝑞
) − 𝑘11𝑆𝛺

2  

                                                                                             (59) 

where �̄�12 = 𝑘12 − 𝑘12
∗  and 𝜀�̄�𝑠𝑞 = 0.2785 𝜀𝑖𝑠𝑞. 

The Lyapunov function linked to the adaptive laws that 

estimate the unknown parameters 𝜃1
∗ and 𝑘12

∗  is defined by: 

 

𝑉2 = 𝑉1 +
1

2𝛾𝜃1

�̃�1
𝑇�̃�1 +

1

2𝛾𝑘1

�̃�12
2                                            (60) 

The dynamics of Lyapunov function verify the following 

inequality: 

 

�̇�2 ≤ −𝑆𝛺�̃�1
𝑇𝜓1(�̄�1) + 𝑘12

∗ 𝜀�̄�𝑠𝑞 − �̃�12𝑆𝛺 𝑡𝑎𝑛ℎ (
𝑆𝛺

𝜀𝑖𝑠𝑞
) −

𝑘11𝑆𝛺
2 +

1

2𝛾𝜃1

�̃�1
𝑇�̇�1 +

1

2𝛾𝑘1

�̃�12�̇�12                                         (61) 

 

By substituting the values of �̇�1 and �̇�12 chosen in (34)-(41) 

and (42)-(49), respectively, �̇�2  will be bounded by the 

following expression: 

 

�̇�2 ≤ 𝑘12
∗ 𝜀�̄�𝑠𝑞 − 𝑘11𝑆𝛺

2 − 𝜎𝜃1
�̃�1

𝑇𝜃1 − 𝜎𝑘1
�̃�12𝑘12                   (62) 

 

Property: 

 

{
−�̃�𝑻𝜣 ≤ −

𝟏

𝟐
‖�̃�‖

𝟐
+

𝟏

𝟐
‖𝜣∗‖𝟐

�̃� = 𝜣 − 𝜣∗ ∈ 𝕽𝒎
                                            (63) 

 

where: m is a positive integer number. By using (63), (62) 

takes the following form: 

 

�̇�2 ≤ −𝑘11𝑆𝛺
2 −

𝜎𝜃1

2
‖�̃�1‖

2
−

𝜎𝑘1

2
�̃�12

2 + 𝜀1̄                              (64) 

 

With: 𝜀1̄ = 𝑘12
∗ 𝜀�̄�𝑠𝑞 +

𝜎𝜃1

2
‖𝜃1

∗‖2 +
𝜎𝑘1

2
𝑘12

∗2 

The stabilization of the filtered errors 

𝑆𝜑 ,  𝑆𝑖𝑠𝑑1 ,  𝑆𝑖𝑠𝑞1 ,  𝑆𝑖𝑠𝑜1,  𝑆𝑖𝑠𝑑2,  𝑆𝑖𝑠𝑞2 , and 𝑆𝑠𝑜2  will be 

achieved in the next step.  

Step 2: The aim of this step is to design the following 

control laws: 𝑖𝑠𝑑
∗ ,  𝑣𝑠𝑑1,  𝑣𝑠𝑞1,  𝑣𝑠𝑜1 ,  𝑣𝑠𝑑2 ,  𝑣𝑠𝑞2 and 𝑣𝑠𝑜2. 

The Lyapunov function adapted to this step is given by: 

 

𝑉3 = 𝑉2 +
1

2
𝑆𝜑

2 +
1

2
𝑆𝑖𝑠𝑑1

2 +
1

2
𝑆𝑖𝑠𝑞1

2 +
1

2
𝑆𝑖𝑠𝑜1

2 +
1

2
𝑆𝑖𝑠𝑑2

2 +
1

2
𝑆𝑖𝑠𝑞2

2 +
1

2
𝑆𝑖𝑠𝑜2

2                                                                       (65) 

 

The dynamics of the Lyapunov function verify the 

following inequality: 

 

�̇�3 ≤ −𝑘11𝑆𝛺
2 −

𝜎𝜃1

2
‖�̃�1‖

2
−

𝜎𝑘1

2
�̃�12

2 + 𝜀1̄ + 𝑆𝜑�̇�𝜑 +

𝑆𝑖𝑠𝑑1�̇�𝑖𝑠𝑑1 + 𝑆𝑖𝑠𝑞1�̇�𝑖𝑠𝑞1 + 𝑆𝑖𝑠𝑜1�̇�𝑖𝑠𝑜1 + 𝑆𝑖𝑠𝑑2�̇�𝑖𝑠𝑑2 +

𝑆𝑖𝑠𝑞2�̇�𝑖𝑠𝑞2 + 𝑆𝑖𝑠𝑜2�̇�𝑖𝑠𝑜2                                                         (66) 

 

The derivatives of the filtered errors are obtained using (5)-

(12) and (17)-(24): 

 

�̇�𝜑 =
𝐿𝑚𝑅𝑟

𝐿𝑚+𝐿𝑟
𝑖𝑠𝑞
∗ + 𝑓2 + 𝜆𝜑�̃�𝑟 − �̇�𝑟

∗                                         (67) 

 

�̇�𝑖𝑠𝑑1 =
1

𝐿𝑠1
𝑣𝑠𝑑1 + 𝑓3 + 𝜆𝑖𝑠𝑑1𝑖̃𝑠𝑑1 − 𝑖̇𝑠𝑑1

∗                                (68) 

 

�̇�𝑖𝑠𝑞1 =
1

𝐿𝑠1
𝑣𝑠𝑞1 + 𝑓4 + 𝜆𝑖𝑠𝑞1𝑖�̃�𝑞1 − 𝑖̇𝑠𝑞1

∗                                (69) 

 

�̇�𝑖𝑠𝑜1 =
1

𝐿𝑠1
𝑣𝑠𝑜1 + 𝑓5 + 𝜆𝑖𝑠𝑜1𝑖̃𝑠𝑜1 − 𝑖̇𝑠𝑜1

∗                                (70) 

 

�̇�𝑖𝑠𝑑2 =
1

𝐿𝑠2
𝑣𝑠𝑑2 + 𝑓6 + 𝜆𝑖𝑠𝑑2𝑖̃𝑠𝑑2 − 𝑖̇𝑠𝑑2

∗                               (71) 

 

�̇�𝑖𝑠𝑞2 =
1

𝐿𝑠2
𝑣𝑠𝑞2 + 𝑓7 + 𝜆𝑖𝑠𝑞2𝑖̃𝑠𝑞2 − 𝑖̇𝑠𝑞2

∗                                 (72) 
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�̇�𝑖𝑠𝑜2 =
1

𝐿𝑠2
𝑣𝑠𝑜2 + 𝑓8 + 𝜆𝑖𝑠𝑜2𝑖̃𝑠𝑜2 − 𝑖̇𝑠𝑜2

∗                                (73) 

 

By replacing (67-73) in (66), we obtain: 

 

�̇�3 ≤ −𝑘11𝑆𝛺
2 −

𝜎𝜃1

2
‖�̃�1‖

2
−

𝜎𝑘1

2
�̃�12

2 + 𝜀1̄ + 𝑆𝜑 (ℎ2(�̄�2) +
𝐿𝑚𝑅𝑟

𝐿𝑚+𝐿𝑟
𝑖𝑠𝑞
∗ ) + 𝑆𝑖𝑠𝑑1 (ℎ3(�̄�3) +

1

𝐿𝑠1
𝑣𝑠𝑑1) + 𝑆𝑖𝑠𝑞1 (ℎ4(�̄�4) +

1

𝐿𝑠1
𝑣𝑠𝑞1) + 𝑆𝑖𝑠𝑜1 (ℎ5(�̄�5) +

1

𝐿𝑠1
𝑣𝑠𝑜1) + 𝑆𝑖𝑠𝑑2 (ℎ6(�̄�6) +

1

𝐿𝑠2
𝑣𝑠𝑑2) + 𝑆𝑖𝑠𝑞2 (ℎ7(�̄�7) +

1

𝐿𝑠2
𝑣𝑠𝑞2) + 𝑆𝑖𝑠𝑜2 (ℎ8(�̄�8) +

1

𝐿𝑠2
𝑣𝑠𝑜2)                                                                                          (74) 

 

With: 

 

ℎ2(�̄�2) = 𝑓2 + 𝜆𝜑�̃�𝑟 − �̇�𝑟
∗  

ℎ3(�̄�3) = 𝑓3 + 𝜆𝑖𝑠𝑑1𝑖̃𝑠𝑑1 − 𝑖̃𝑠𝑑1
∗   

ℎ4(�̄�4) = 𝑓4 + 𝜆𝑖𝑠𝑞1𝑖̃𝑠𝑞1 − 𝑖̃𝑠𝑞1
∗   

ℎ5(�̄�5) = 𝑓5 + 𝜆𝑖𝑠𝑜1𝑖̃𝑠𝑜1 − 𝑖�̃�𝑜1
∗   

ℎ6(�̄�6) = 𝑓6 + 𝜆𝑖𝑠𝑑2𝑖̃𝑠𝑑2 − 𝑖̃𝑠𝑑2
∗   

ℎ7(�̄�7) = 𝑓7 + 𝜆𝑖𝑠𝑞2𝑖�̃�𝑞2 − 𝑖�̃�𝑞2
∗   

ℎ8(�̄�8) = 𝑓8 + 𝜆𝑖𝑠𝑜2𝑖̃𝑠𝑜2 − 𝑖�̃�𝑜2
∗                                                   (75) 

 

ℎ𝑖(�̄�𝑖), 𝑖 = 2,8 are continuous uncertainties functions, their 

approximation is performed by the following adaptive fuzzy 

system:  

 

ℎ̂𝑖(�̄�𝑖) = 𝜃𝑖
𝑇𝜓𝑖(�̄�𝑖)                                                               (76) 

 

ℎ𝑖(�̄�𝑖) = 𝜃𝑖
∗𝑇𝜓𝑖(�̄�𝑖) + �̄�𝑖(�̄�𝑖)  

ℎ𝑖(�̄�𝑖) = −�̃�𝑖
𝑇𝜓𝑖(�̄�𝑖) + 𝜃𝑖

𝑇𝜓𝑖(�̄�𝑖) + �̄�𝑖(�̄�𝑖)for 𝑖 = 1,8   

                                                                                            (77) 

 

where: �̃�𝑖 = 𝜃𝑖 − 𝜃𝑖
∗  expresses the error vector, �̄�𝑖  is pre-

defined, �̄�𝑖(�̄�𝑖)  is the fuzzy approximation error with 

�̄�𝑖(�̄�𝑖) ≤ �̄̄�𝑖, ∀ �̄�𝑖 ∈ 𝐷𝑥𝑖
, �̄̄�𝑖 is an unknown constant. 

{𝜃𝑖
∗,  𝑘𝑖2

∗ },  𝑖 = 2,8  are unknown parameters, their 

estimation requires an adaptive law defined by the following 

Lyapunov function: 

 

𝑉4 = 𝑉3 +
1

2𝛾𝜃2

�̃�2
𝑇�̃�2 +

1

2𝛾𝑘2

�̃�22
2 +

1

2𝛾𝜃3

�̃�3
𝑇�̃�3 +

1

2𝛾𝑘3

�̃�32
2 +

1

2𝛾𝜃4

�̃�4
𝑇�̃�4 +

1

2𝛾𝑘4

�̃�42
2 +

1

2𝛾𝜃5

�̃�5
𝑇�̃�5 +

1

2𝛾𝑘5

�̃�52
2 +

1

2𝛾𝜃6

�̃�6
𝑇�̃�6 +

1

2𝛾𝑘6

�̃�62
2 +

1

2𝛾𝜃7

�̃�7
𝑇�̃�7 +

1

2𝛾𝑘7

�̃�72
2 +

1

2𝛾𝜃8

�̃�8
𝑇�̃�8 +

1

2𝛾𝑘8

�̃�82
2      (78) 

 

The derivation of (78) gives (see Appendix B): 

 

�̇�4 ≤ −𝜂𝑉4 + 𝜇                                                                      (79) 

 

With:  

𝜇 = 𝜀1̄ + 𝜀2̄ + 𝜀3̄ + 𝜀4̄ + 𝜀5̄ + 𝜀6̄ + 𝜀7̄ + 𝜀8̄  

𝜂𝑘 = 𝑚𝑖𝑛{𝜎𝑘1
𝛾𝑘1

, 𝜎𝑘2
𝛾𝑘2

, 𝜎𝑘3
𝛾𝑘3

, 𝜎𝑘4
𝛾𝑘4

, 𝜎𝑘5
𝛾𝑘5

, 𝜎𝑘6

𝛾𝑘6
, 𝜎𝑘7

𝛾𝑘7
, 𝜎𝑘8

𝛾𝑘8
}  

And 

𝜂 =

𝑚𝑖𝑛{2𝑘11, 2𝑘21, 2𝑘31, 2𝑘41, 2𝑘51, 2𝑘61, 2𝑘71, 2𝑘81, 𝜎𝜃1

𝛾𝜃1
, 𝜎𝜃2

𝛾𝜃2
, 𝜎𝜃3

𝛾𝜃3
,𝜎𝜃4

𝛾𝜃4
, 𝜎𝜃5

𝛾𝜃5
, 𝜎𝜃6

𝛾𝜃6
, 𝜎𝜃7

𝛾𝜃7
, 𝜎𝜃8

𝛾𝜃8
, 𝜂𝑘} 

If we multiply (79) by the exponential term 𝑒𝜂𝑡, we obtain 

[11]: 

 

𝑑

𝑑𝑡
(𝑉4𝑒

𝜂𝑡) ≤ 𝜇𝑒𝜂𝑡                                                                 (80) 

 

The integration of (80) from 0 to t gives us: 

 

0 ≤ 𝑉4 ≤
𝜇

𝜂
+ (𝑉4(0) −

𝜇

𝜂
) 𝑒−𝜂𝑡                                                (81) 

 

where: 𝜇  s a randomly selected parameter and 𝜂  is chosen 

according to the design parameters. According to [11]: the 

bounded interval of �̇�4  presented by (81) reflects the 

exponential convergence to an adaptable residual set for 

tracking errors, filtered tracking errors and parameter 

estimation errors, adding to that the delimitation of all closed-

loop signals. The global block diagram of the proposed FTC 

is shown in Figure 2. 
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Figure 2. lock diagram of the proposed FTC 

 

 

4. SIMULATION RESULTS AND COMPARISONS 

 

4.1 Fault diagnostic in open loop  

 

The machine parameters used to simulate the DSIM faulty 

model presented in section 2 are given in Appendix A. The 

DSIM studied in this paper is powered by two three-phase 

voltage source inverters (VSIs) using pulse width modulation 

(PWM) control strategies. In steady-state conditions, the 

DSIM operates with a fundamental frequency equal to 50 Hz 

at 100% load. Figure 3 below shows the evolution in time of 

the speed, the electromagnetic torque, the stator current and 

the flux for DSIM operating in open loop with a healthy and 

defective squirrel cage rotor. 

The vectors �̄�1 = [𝛺∗,  𝛺]𝑇 , �̄�2 = [𝜑𝑟
∗,  𝜑𝑟]

𝑇 , �̄�3 =

[𝑖𝑠𝑑1,  𝑖𝑠𝑞1]
𝑇

, �̄�4 = [𝑖𝑠𝑞1,  𝑖𝑠𝑑1]
𝑇

, �̄�5 = [𝑖𝑠𝑜1
∗ ,  𝑖𝑠𝑜1]

𝑇 , �̄�6 =

[𝑖𝑠𝑑2,  𝑖𝑠𝑞2]
𝑇

, �̄�7 = [𝑖𝑠𝑞2,  𝑖𝑠𝑑2]
𝑇

 and �̄�8 = [𝑖𝑠𝑜2
∗ ,  𝑖𝑠𝑜2]

𝑇 

present the inputs of the type-2 fuzzy system 𝜃𝑖
𝑇𝜓𝑖(�̄�𝑖) for 𝑖 =

1,8. 

For the variables (𝛺, 𝛺∗,  𝜑𝑟 ,  𝜑𝑟
∗)  and 

(𝑖𝑠𝑑1 ,  𝑖𝑠𝑞1,  𝑖𝑠𝑑2,  𝑖𝑠𝑞2,  𝑖𝑠𝑜1
∗ ,  𝑖𝑠𝑜1,  𝑖𝑠𝑜2

∗ ,  𝑖𝑠𝑜2)  we define five 

type-2 Gaussian membership functions uniformly distributed 

over intervals [-30, 30] and [-3, 3] respectively. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 3. Evolution of the parameter curve, at startup, in load 

and when breaking bars 

 

The startup is done empty under a nominal voltage with a 

balanced sinusoidal power supply. The time response is 

approximately equal to 1s. An external load torque of nominal 

value equal to 15 N.m is applied at t=2sec, the speed then 

drops to its nominal value of 286 rad/s. The electromagnetic 

torque compensates the load torque and the friction losses. The 

current increases and reaches its nominal value at time t=1s. A 

broken bars fault is caused at t=3sec by increasing the 

resistance of a rotor phase (𝑒 = 6 𝛺) .The fault appears 

instantaneously and the rotor circuit becomes asymmetrical  

because the rotor creates in addition to the direct field (+𝑠𝜔𝑠), 

an inverse rotor field (−𝑠𝜔𝑠), the interaction of these fields 

with that resulting from the stator winding produces an 

electromagnetic torque of pulsation [𝑉𝑟
𝑎𝑏𝑐] = [𝑅𝑟

𝐵𝑅𝐵][𝐼𝑟
𝑎𝑏𝑐] +

𝑑

𝑑𝑡
[𝛷𝑟

𝑎𝑏𝑐], as a result, the value of the electromagnetic torque 

will be equal to the sum of a constant component and a 

sinusoidal inverse component, resulting in the reduction of the 

average value of the electromagnetic torque and the 

appearance of periodic oscillations in the speed signal and 

torque, as shown in Figure 3.a and Figure 3.b respectively. 

Figure 3.c presents the stator current in which a weak 

modulation of the magnitude can be observed, the flux signal 

is also affected by oscillations related to the BRB fault (see 

Figure 3.d). Figure 3.e and Figure 3.f show that the stator 

phase currents are always shifted by 
2𝜋

3
 but ripples in their 

amplitudes appear with the occurrence of BRB. All these 

diagnoses prove the appearance of the BRB fault [17]. In the 

unbalanced machine winding, harmonics causes sidebands at 

specific frequencies around the supply frequency. In this study, 

the fast Fourier transform (FFT) is used in order to distinguish 

these frequency components from the stator current spectrum. 

 

 
 

Figure 4. Stator current spectral density 

 

Figure 4 presents the spectral analysis of the stator current 

in steady state using the FFT method when the DSIM operates 

under nominal load for a slip s = 0.4%. When the DSIM 

operates with BRB fault sidebands at (1 ± 2𝑠)𝑓𝑠  appear 

around the supply frequency. This result is a reliable signature 

of the BRB fault. Moreover, the amplitude of this harmonics 

is an indication of the degree of severity of the fault. 

 

4.2 Healthy and defective states of DSIM in closed loop  

 

The efficiency and robustness of the proposed control 

compared to SMC proposed in Listwan and Fnaiech [9-10] 

with different modes of operation, especially in post-fault 

operation are shown through simulation results using 

MATLAB/SIMULINK. The reference speed is set at 200 rd/s, 

the BRB fault is introduced at t=2 sec. The simulations 
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presented in Figure 5 show the DSIM responses in healthy and 

defective mode with SMC and proposed FTC. The results 

showed the superior performance of the proposed FTC based 

on IT2FLS. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 5. Pre-fault (t <2s) and post-fault (t >2s) performance 

of SMC proposed in [9-10] and proposed FTC for DSIM 

The DSIM is starting with a balanced squirrel cage rotor 

from zero to the nominal speed, at t=1s, DSIM is loaded by 

𝑇𝐿 = 𝑇𝐿𝑁 = 15 𝑁.𝑚, a simulation of the BRB fault is caused 

at t=2s. During the un-faulty mode, the speed follows its 

reference value with a negligible overshoot and without 

oscillations, but it is clearly shows that SMC has a faster 

dynamic response than the proposed FTC by imposing a short 

transient regime, the load torque is very well compensated by 

the electromagnetic torque (before t=2s). It is clear that after 

the fault occurrence, an abnormal behavior of the DSIM is 

observed with SMC accompanied by closed-loop performance 

degradation; velocity oscillations are visible through the zoom 

presented in Figure 5.a and Figure 5.b. The stator phase current 

is not sinusoidal, the distortion of the signal is caused by the 

fault effect, the oscillations on this physical quantity are 

visible in Figure 5.c and Figure 5.d, their amplitude can reach 

up to ±14 A greater than the nominal value of the current. The 

flux trajectory is presented in Figure 5.e; SMC provides 

ripples after the appearance of the BRB fault. High ripples in 

the electromagnetic torque can be view in Figure 5.f, where 

the maximum positive ripple reaches +55N.m and the 

maximum negative ripple reaches -11 N.m. Regarding the 

proposed FTC, oscillations in rotor speed are considerably 

reduced as indicated by the Figure 5.a and Figure 5.b, the 

proposed FTC guarantees a better speed response with precise 

reference tracking and also provides better stability with the 

smallest average static error. The tracking performance of the 

stator current has a small change, the current signal is not 

sinusoidal but does not exceed its nominal value, this 

deformation represented in Figure 5.d expresses the 

compensation of the BRB fault effect by the stators phases. 

Figure 5.e proves that the proposed FTC is able to correctly 

lead the flux with a fast dynamic to its desired reference (1Wb) 

even under rotor fault. No ripple in the electromagnetic torque 

signal during faulty operation as shown in Figure 5.f. Finally, 

it can be seen from the simulations results that the BRB fault 

does not affect the performance of the proposed FTC even in 

the presence of load torque while SMC proposed in Listwan 

and Fnaiech is unable to properly handle the machine with an 

unbalanced rotor [9,10]. 

 

 

5. CONCLUSION 

 

DSIM’s high-impact in the industry requires fault-tolerant 

performance. This can be achieved by a fuzzy adaptive control 

using the IT2FLS; the proposed FTC maintains maximum 

performance of the double star induction machine even under 

broken bars fault. The effectiveness of the proposed FTC is 

validated using MATLAB/SIMULINK. The obtained results 

show that the proposed fault-tolerant approach is able to 

handle the post-fault operation and provides satisfactory 

performance in terms of speed and torque responses even 

under such abnormal conditions. In addition, the comparative 

study performed with other work recently developed on a 

multiphase machine has shown improved fault tolerant 

performance. This adaptive fault-tolerant control could be a 

realistic solution and a powerful alternative to the existing 

FTC methods. 
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APPENDIX A 

 

Machine parameters  

Rs1 = Rs2 =3.72 Ω Stator1, Stator2 resistance respectively. 

Ls1 = Ls2 =0.022 H Stator1, Stator2 inductance respectively. 

Rr = 2.12 Ω Rotor resistance. 

Lr = 0.006 H Rotor inductance.  

Lm = 0.3672 H Mutual inductance. 

J = 0. 0625 Kgm2 Moment of inertia. 

Kf = 0.001 Nm. (rd/s)-1 Viscous friction coefficient. 

p =1 Number of pole pairs. 

 

 

APPENDIX B 

 

If we select the adaptive fuzzy controller components 

proposed in (26)-(33) and the continuous uncertainties 

functions ℎ𝑖(�̄�𝑖) developed in (77), �̇�3 will be bounded by the 

following term: 

 

�̇�3 ≤ −𝑘11𝑆𝛺
2 −

𝜎𝜃1

2
‖�̃�1‖

2
−

𝜎𝑘1

2
�̃�12

2 + 𝜀1̄ − 𝑆𝜑�̃�2
𝑇𝜓2(�̄�2) +

𝑘22
∗ |𝑆𝜑| − 𝑘22𝑆𝜑 𝑡𝑎𝑛ℎ (

𝑆𝜑

𝜀𝑖𝑠𝑑
) − 𝑘21𝑆𝜑

2 − 𝑆𝑖𝑠𝑑1�̃�3
𝑇𝜓3(�̄�3) +

𝑘32
∗ |𝑆𝑖𝑠𝑑1| − 𝑘32𝑆𝑖𝑠𝑑1 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑑1

𝜀𝑖𝑠𝑑1
) − 𝑘31𝑆𝑖𝑠𝑑1

2 −

𝑆𝑖𝑠𝑞1�̃�4
𝑇𝜓4(�̄�4) + 𝑘42
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) −

𝑘41𝑆𝑖𝑠𝑞1
2 − 𝑆𝑖𝑠𝑜1�̃�5

𝑇𝜓5(�̄�5) + 𝑘52
∗ |𝑆𝑖𝑠𝑜1| −

𝑘52𝑆𝑖𝑠𝑜1 𝑡𝑎𝑛ℎ (
𝑆𝑖𝑠𝑜1

𝜀𝑖𝑠𝑜1
) − 𝑘51𝑆𝑖𝑜𝑠1

2 − 𝑆𝑖𝑠𝑑2�̃�6
𝑇𝜓6(�̄�6) +

𝑘62
∗ |𝑆𝑖𝑠𝑑2| − 𝑘62𝑆𝑖𝑠𝑑2 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑑2

𝜀𝑖𝑠𝑑2
) − 𝑘61𝑆𝑖𝑠𝑑2

2 −

𝑆𝑖𝑠𝑞2�̃�7
𝑇𝜓7(�̄�7) + 𝑘72

∗ |𝑆𝑖𝑠𝑞2| − 𝑘72𝑆𝑖𝑠𝑞2 𝑡𝑎𝑛ℎ (
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𝑆𝑖𝑠𝑜2

𝜀𝑖𝑠𝑜2
) − 𝑘81𝑆𝑖𝑠𝑜2

2                                       (B.1) 

 

where: 𝑘22
∗ = �̄̄�2, 𝑘32

∗ = �̄̄�3, 𝑘42
∗ = �̄̄�4, 𝑘52

∗ = �̄̄�5, 𝑘62
∗ = �̄̄�6, 

𝑘72
∗ = �̄̄�7 and 𝑘82

∗ = �̄̄�8. 

By exploiting (63), the inequality (B.1) becomes:  

 

�̇�3 ≤ −𝑘11𝑆𝛺
2 −

𝜎𝜃1

2
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2
−

𝜎𝑘1

2
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2 − 𝑆𝑖𝑠𝑑1�̃�3
𝑇𝜓3(�̄�3) +

𝑘32
∗ 𝜀�̄�𝑠𝑑1 − �̃�32𝑆𝑖𝑠𝑑1 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑑1

𝜀𝑖𝑠𝑑1
) − 𝑘31𝑆𝑖𝑠𝑑1

2 −
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∗ 𝜀�̄�𝑠𝑞1 − �̃�42𝑆𝑖𝑠𝑞1 𝑡𝑎𝑛ℎ (
𝑆𝑖𝑠𝑞1

𝜀𝑖𝑠𝑞1
) −
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𝑘41𝑆𝑖𝑠𝑞1
2 − 𝑆𝑖𝑠𝑜1�̃�5

𝑇𝜓5(�̄�5) + 𝑘52
∗ 𝜀�̄�𝑠𝑜1 −

�̃�52𝑆𝑖𝑠𝑜1 𝑡𝑎𝑛ℎ (
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) − 𝑘51𝑆𝑖𝑜𝑠1

2 − 𝑆𝑖𝑠𝑑2�̃�6
𝑇𝜓6(�̄�6) +

𝑘62
∗ 𝜀�̄�𝑠𝑑2 − �̃�62𝑆𝑖𝑠𝑑2 𝑡𝑎𝑛ℎ (

𝑆𝑖𝑠𝑑2

𝜀𝑖𝑠𝑑2
) − 𝑘61𝑆𝑖𝑠𝑑2

2 −

𝑆𝑖𝑠𝑞2�̃�7
𝑇𝜓7(�̄�7) + 𝑘72

∗ 𝜀�̄�𝑠𝑞2 − �̃�72𝑆𝑖𝑠𝑞2 𝑡𝑎𝑛ℎ (
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𝜀𝑖𝑠𝑞2
) −
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2 − 𝑆𝑖𝑠𝑜2�̃�8

𝑇𝜓8(�̄�8) + 𝑘82
∗ 𝜀�̄�𝑠𝑜2  

�̃�82𝑆𝑖𝑠𝑜2 𝑡𝑎𝑛ℎ (
𝑆𝑖𝑠𝑜2

𝜀𝑖𝑠𝑜2
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2                                           (B.2) 

 

where: �̄�22 = 𝑘22 − 𝑘22
∗ , �̄�32 = 𝑘32 − 𝑘32

∗ , �̄�42 = 𝑘42 − 𝑘42
∗ , 

�̄�52 = 𝑘52 − 𝑘52
∗ , �̄�62 = 𝑘62 − 𝑘62

∗ , �̄�72 = 𝑘72 − 𝑘72
∗ , �̄�82 =

𝑘82 − 𝑘82
∗ , 𝜀�̄�𝑠𝑑 = 0.2785𝜀𝑖𝑠𝑑 , 𝜀�̄�𝑠𝑑1 = 0.2785𝜀𝑖𝑠𝑑1 , 𝜀�̄�𝑠𝑞1 =

0.2785𝜀𝑖𝑠𝑞1 , 𝜀�̄�𝑠𝑜1 = 0.2785𝜀𝑖𝑠𝑜1 , 𝜀�̄�𝑠𝑑2 = 0.2785𝜀𝑖𝑠𝑑2 , 

𝜀�̄�𝑠𝑞2 = 0.2785𝜀𝑖𝑠𝑞2 and 𝜀�̄�𝑠𝑜2 = 0.2785𝜀𝑖𝑠𝑜2. 

The derivation of 𝑉4 gives: 
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By using (63), we obtain: 
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where:  

𝜀2̄ = 𝑘22
∗ 𝜀�̄�𝑠𝑑 +

𝜎𝜃2

2
‖𝜃2

∗‖2 +
𝜎𝑘2

2
𝑘22

∗2,   

𝜀3̄ = 𝑘32
∗ 𝜀�̄�𝑠𝑑1 +

𝜎𝜃3

2
‖𝜃3

∗‖2 +
𝜎𝑘3

2
𝑘32

∗2,  

𝜀4̄ = 𝑘42
∗ 𝜀�̄�𝑠𝑞1 +

𝜎𝜃4

2
‖𝜃4

∗‖2 +
𝜎𝑘4

2
𝑘42

∗2, 

𝜀5̄ = 𝑘52
∗ 𝜀�̄�𝑠𝑜1 +

𝜎𝜃5

2
‖𝜃5

∗‖2 +
𝜎𝑘5

2
𝑘52

∗2, 

𝜀6̄ = 𝑘62
∗ 𝜀�̄�𝑠𝑑2 +

𝜎𝜃6

2
‖𝜃6

∗‖2 +
𝜎𝑘6

2
𝑘62

∗2, 

𝜀7̄ = 𝑘72
∗ 𝜀�̄�𝑠𝑞2 +

𝜎𝜃7

2
‖𝜃7

∗‖2 +
𝜎𝑘7

2
𝑘72

∗2, 

𝜀8̄ = 𝑘82
∗ 𝜀�̄�𝑠𝑜2 +

𝜎𝜃8

2
‖𝜃8

∗‖2 +
𝜎𝑘8

2
𝑘82

∗2. 
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